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The evolution of the vibrational motion of a water molecule which has been 
excited locally is studied. An exact solution is obtained of a model Hamiltonian 
representing the non-harmonic behaviour of  the molecule. Since this is 
obtained numerically it does not explain what is observed but it leads to a 
simplified model of  the motion in which different aspects can be isolated and 
discussed. For many initial modes, especially those of  higher energy, there is 
a large initial drop in the probability of  finding the energy in the original 
local mode. This is due to dephasing. The factors involved in dephasing are 
discussed. A simple hypothesis is suggested which leads to a formula for this 
drop and this agrees substantially with the graphical evidence. The relation 
between the drop and the amplitude of the initial mode is also discussed. 
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1. Introduction 

The migration of vibrational energy within a molecule is becoming a subject of  
great interest now that infrared lasers have made it easy to input considerable 
energy into molecular vibrations and experimental methods of detecting the 
effects have been developed. A review of these results for some molecules has 
been given by Weitz and Flynn [1]. 

Earlier papers by Freed and Nitzan [2] and by Stannard and Gelbart  [3] have 
discussed the general features of  the evolution of the excitation. Several stages 
have been distinguished. The first is often called dephasing since the different 
modes of vibration start with identical phase but rapidly lose this after a few 
oscillations. The second is characterized by beats in the probability functions. 
The importance of quantum beats for radiative decay has been emphasized by 
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Ivanco et al. [4]. In the third, the steady leakage of energy into other higher 
energy modes begins to be observed as a general decay of probability of the 
lower levels. In calculating this decay, random influences become more important 
and statistical arguments predominate (e.g. Ramaswamy et al. [5]). This paper 
is concerned with the first stage and the transition to the second. The decay effects 
are ignored. 

In their paper [3] Stannard and Gelbart distinguish sharply between the behaviour 
of small molecules and large molecules. Here we deal only with the lower states 
of small molecules. The density of states is then too sparse for arguments using 
the golden rule to be appropriate. The water molecule is used as an example 
throughout. 

The numerical solution of the dynamical equations is outlined in Sect. 2 and an 
approximate solution which can be obtained analytically in Sect. 3. The form of 
the molecular Hamiltonian is discussed in Sect. 4 and the different types of graph 
of the probability of the initial state are described. An important distinction is 
that between the results for initial states which are non-degenerate and those 
which are degenerate. The behaviour typical of these is outlined in Sects. 5 and 
6. The most interesting quantity for this paper is the rapid initial drop in probability 
due to dephasing. This is defined in two ways in Sect. 7 and the results compared. 
Although it has not been possible to relate them exactly, the connection of the 
drop with the density of states is discussed in Sect. 9 and with the amplitude of 
the initial state in Sect. 10. 

2. The exact solution 

The initial behaviour of a molecule immediately after excitation is complicated. 
We assume that all the energy is concentrated initially into one local mode of 
vibration and that this energy is small compared with the dissociation energy. 
Because of the coupling of modes this energy can then excite many other modes 
but these are all discrete modes below the dissociative continuum. 

The initial state will be called II) and will be a local mode, not an eigenstate. 
Atomic units will be used throughout the paper. The Hamiltonian operator H, 
in a basis of local modes which are taken as normal and orthogonal, is now 
divided into diagonal and off-diagonal parts 

H = D + V  (1) 

so that Dr is the energy of the mode I r). The time dependent SchrSdinger equation 
for the evolution of II) is 

r = i (D+ V)~l, (2) 

with the initial condition q~(O) = II). 

The exact solution of the equation within the finite basis is obtained by a direct 
numerical method. The first step requires finding all the eigenvalues of the matrix 
H and, in the second step, the initial state is expanded in terms of its eigenvectors. 
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If the eigenvalues are Es, the (time independent) eigenfunctions 4', and the 
expansion coefficients for II) in terms of 4's are cl, then the wave function for 
the evolving ]I) is 

4' = Z  c,, exp (itEs)4's, [I) = Y. c,s4's, (3) 
s s 

and the probability of finding the molecule in [I) after t is 

2 

exp (itEm) P(t)=I<II4'>I 2-- Ic1~12 (4) 

= 2  Ic,,I 4+ Y~ 2[c,sl2]c,.I = cos (z~-z~)t. (5) 
s s > u  

The first term in (5) is constant and determines (P), the average value of P while 
the second consists of beats with the exact transition energies as frequencies. 
With modern computers and using a sufficiently large number of local modes, 
this solution can be evaluated numerically for any required value of  t. Unfortu- 
nately it does not explain the structure of P nor the magnitude of c~ in a physical 
way so that other solutions are required to achieve understanding of the results. 

3. The one-state model 

To explain the evolution process in more physical terms, 4' will be expanded in 
the local modes, Is), rather than the eigenfunctions, since they show where the 
excitation is located, thus 

4' = ~, a,(  t)Is ) (6) 
s 

and the equations for the a,(t) become 

d. = iD.a .  + i Z Vs~a., (7) 
u 

with 

a, (0)  = ~ , .  (8) 

The one-state model which we use to explain the process now retains only those 
elements of  V which connect directly with the initial state. These should be the 
most important terms for the early stages of its evolution. This simplification 
allows the equations to be solved analytically. To obtain the solution for the 
evolution of the initial state it is convenient to use the Laplace transform method 
to solve the differential equations. As is the Laplace transform of as and Eqs. 
(7) and (8) become: 

(9) 

pAr = i(DrAr+ VrIA,), (10) 
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where we take r ~ I in all the equations in this section. Eq. 10 can be solved 
directly so that 

A r = i V r l a J ( p  - iDa) (11) 

A I =  l / (  p - i D I  +~r V1rVd/(p-- iDr))  " (12) 

The eigenvalues of  the model Hamiltonian are the zeros p = iZr (Zr is real) of the 
denominator  of At. These can be calculated iteratively. The roots satisfy 

z = D, +E  VIrVrI/(Z - -  Dr) (13) 
r 

and for the root near DI, DI can be used as the first approximation on the right 
of the equation. But for other roots the expression needs to be rearranged by 
isolating the sth term, 

z = Ds + V,~V~,/(z - Dr) + (z - D , ) / ( z  - D,)  2 V, rVr,/(z - Dr). (14) 
r 

This second form allows D, to be the first approximation to the nearest root z. 
Note that there is one root near DI and those above this have zr > Dr whereas 
those less than this have zr < D .  I f  the roots include no repeated roots then A~ 
can be expressed in simple partial fractions as 

A~ = ~ cs/(p - iZs) (15) 
s 

and the solution will be 

al =Y' cs exp (izst). (16) 
s 

The coefficient cs is defined by the limit 

Cs= p~lim, z, ( p - i z s ) / ( p - i D ~ + ~ r  V ' r V r l / ( p - i D " ) )  " 

Using L'Hospi tal ' s  rule this gives 

where s includes all the possible states but r excludes I. It is obvious from this 
that 1 -> c, -- 0. (A state for which V~ = 0 is non-interacting and must be excluded 
from the expansions. Since it has z~. = D, it will introduce indeterminate terms 
into the equations.) It can be seen from Cs that when D~ is very different from 
the other D~ then z~ becomes close to Dt and cf tends to 1. Since, because of 
the initial condition, Y~ c~--1 the remaining Cs must be rather small. More 
generally it can be seen that the main effect of the evolution is to mix into I the 
interacting local states close to it in energy. The probability of  finding the molecule 
in the state I is now 

P(t)  --I(Ilq,)l 2 -- laAt)l  z. (18) 
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Since a~ is a sum of exponentials its product with its conjugate will have constant 
terms and cosine terms which are the beats. 

P = •  c, 2+2 Z csc, cos (Zs-Zu)t. (19) 
s s > u  

By comparing this expression with (5) it can be seen that Cs is the approximation 

t o  Ic, l 2 

The one-state model does not allow the degeneracies of  the real equations for a 
symmetrical molecule to be resolved in a way that takes full account of  symmetry. 
The water vibrations contain some exact degeneracies among the local modes 
due to its two identical bonds. In particular, when I is itself degenerate the model 
ignores terms in V of equal importance to those included. By using the symmetry 
fully we can extend the one-state model to make it rather more accurate. 

In this modification the initial mode and some other modes will be assumed 
degenerate in pairs, e.g. D~ = D~,. Such degeneracy can be resolved by taking + 
and - combinations of  the modes. Thus we have symmetric modes, including 
+ combinations of each pair together with the non-degenerate modes, and 
anti-symmetric modes which all have - combinations. This allows fully for a 
permutation symmetry between the local modes. The extension to more elaborate 
symmetries follows the same principles but requires a more deliberate use of 
group theory. 

As a result of this transformation there are two Hamiltonian matrices which can 
be treated separately. The symmetric matrix has diagonal elements which are the 
energies of  the symmetric combinations, i.e. Ds + Vss,. The off-diagonal elements 
are V~s+ V~s,, or Vxsx/2 when s is non-degenerate. The restriction to the off- 
diagonal elements which connect with the initial mode is made after the transfor- 
mation. This means that more than twice as many matrix elements are included 
as before. The anti-symmetric matrix is set up in a similar way. Its diagonal 
elements are D s -  V~, and the off-diagonal elements are V ~ -  V~s,. 

For each matrix the procedure of  the one-state model is applied. This will give 
the evolution of a symmetrized initial mode [ I + )  and of an antisymmetrized 
mode J I - ) .  The evolution of the local mode is just the average of these since 
the evolution equation is linear and, at t = 0, 

[I) = 1/~/2[I +)  + 1/,f2lI - ) .  (20) 

When substituted into (18) this divides the coefficients by 2 and introduces cross 
terms into the beats. We note here that Stannard and Gelbart [3] take the initial 
state as [ I + )  so their solution is confined to the symmetrical modes. 

The conclusion from this is that the system has a drop in amplitude of the initial 
mode from 1 to c~, as given by (17), due to the transfer of  energy to other modes 
induced by V. 

4. The molecular potential for water and its spectrum 

As has been shown earlier by Stannard et al. [6] the vibrations of  water can be 
described to good accuracy using a potential based on local coordinates viz. the 
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Table 1. Morse parameters and vibrational energy constants of the local modes 

De (cm -1) a w (cm -1) o)x (cm -~) 

Stretch 38838 2.34(~ -1) 3905 98 
Bend 99822 0.42 1597 6 
Stretch-stretch coupling -5084 ( c m - l / ~  2) 
Stretch-bend coupling 11 025 (cm-1 /~)  

r e =0.9572 ,~.; 0 = 104.52 ~ 

stretch of the two OH bonds and the bend of the molecular angle at O. This 
potential is described here by Morse potentials in these local coordinates rather 
than by a Taylor expansion so that the anharmonicity can be already included 
in the local wavefunctions. The local modes are coupled by potential terms which 
are bilinear in the variables. The kinetic energy, because of the elimination of 
the centre of mass motion, has terms which also couple the three local coordinates 
bilinearly. By relating this Hamiltonian to the Taylor expansion, values of the 
Morse parameters can be derived which give a close fit to the Taylor parameters, 
derived from the experimental vibration spectra, as reported by Hoy et al. [7]. 
The values of the Morse and interaction parameters used are given in Table 1. 

The spectrum was calculated for this Hamiltonian and compared directly to 
experiment. The states included in the calculation were those having up to 5 
quanta in each local mode. The wavefunctions are products of three Morse 
wavefunctions and are, therefore, normal and orthogonal. They are denoted by 
lmn, where l is the number of quanta in the first OH stretch, m in the second 
and n in the bend. The accuracy with which this Hamiltonian and this finite 
basis can reproduce the experimental vibration spectrum is shown by the selected 
results in Table 2. The column headed "Exact" gives the frequencies calculated 

Table 2. Vibrational energies (cm ~) for H20 

State Expt. Exact When initial state is 

100 002 221 

(000) (4649) 
(001) 1595 1577 1581 1584 1584 
(002) 3152 3132 3146 3128 3156 
(100) 3657 3669 3667 3669 3659 
(010) 3756 3757 3753 3758 3758 
(003) 4667 4676 4715 4715 4715 
(101) 5235 5235 5243 5250 5243 
(011) 5331 5333 5342 5342 5342 
(004) 6136 6212 6261 6261 6261 
(102) 6775 6799 6815 6815 6815 
(012) 6872 6883 6914 6914 6914 
(200) 7201 7198 7213 7213 7212 
(020) 7250 7242 7228 7228 7228 
(110) 7445 7455 7417 7417 7417 
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from the eigenvalues of the Hamiltonian. It is convenient to label the eigenstates 
as (Iron), where lmn is the mode which makes the largest contribution to the 
eigenfunction, except that (lmn), when l >  m, now denotes the symmetric mode 
based equally on Iron and mln and, when l <  m, their anti-symmetric mode. For 
frequencies less than 20 000 cm i the comparison with experiment is good to very 
good. For higher frequencies some differences become apparent but no drastic 
discrepancy is found. For the lower frequencies these local modes relate well to 
the eigenfunctions since, once the degeneracy of the two stretches is resolved by 
taking the sum and difference of Iron and mln modes, the result is a very close 
approximation to the eigenfunction. For the higher frequencies the states become 
closer in frequency and the local modes are mixed much more together in the 
normal modes. This result confirms the finding of Stannard and Gelbart [3] on 
the same molecule using a smaller set of local modes. 

With this Hamiltonian the evolution of an initial state was calculated for a variety 
of choices of  initial state. The exact solution was calculated using (5). The graphs 
of P(t), the probability of finding the system in the initial state at a later time, 
were plotted and examined. Four examples, which indicate the variety of results 
obtained, are shown in Figs. 1-4. Some features are immediately apparent. The 
graph of 100 is dominated by the resonance of this initial mode with 010. This 
gives a beat between (100) and (010) with an amplitude of 0.488 which is almost 
the maximum possible amplitude. The graphs of 101,102, and 103 are very similar 
but show a few ripples of high frequency. Fig. 2 for 002, in contrast, shows a 
large value of  (P) and only a small amplitude of beat so P remains close to 1. 
This is caused by the large value of cu, which is the coefficient of the initial mode 
in (3), the small amplitude of the beat between (002) and (100) and the very 
small amplitude of  all other beats. Again, 001 and 003 are very similar graphs. 
Neither of these figures shows the initial dephasing drop which is expected. This 
is a little more evident in Fig. 3 for 221. The graph for 303 in Fig. 4 shows a 
more pronounced drop. 

To understand these and other features of the results the one-state model was 
used. This makes it much easier to identify and label the beats. As is already 

Fig. 1. The probability of  finding 
the 100 vibrational mode excited at 
a later time. t is in picoseconds 
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Fig. 2. The probability of  finding 
the 002 vibrational mode excited 
at time t 
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Fig. 3, The probability of  finding 
the 221 vibrational mode excited 
at time t 
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apparent  from Figs. 1 and 2, it is essential to distinguish sharply between the 
degenerate and non-degenerate initial states since their behaviour contrasts 
markedly and this model does so. 

5. Degenerate initial states 

When the initial state is degenerate, i.e. of  the form lmn with 1 > m, the evolution 
is dominated by this degeneracy. The lmn and rnln modes have the same energy 
before the coupling is included. They then split into symmetric and antisymmetric 
modes with slightly different energies. The probability oscillates between these 
with a low frequency and this determines the profile of  the curves. On this are 
superimposed ripples due to other modes interacting with both states. The 
profile is determined by the 1 and m values and the ripples primarily by the 
value of n. 
As the energy of the initial mode increases these evolutions show more and more 
a fast initial drop in probability which is never recovered. The origin of  this effect 
is the coupling of these modes to those of much higher energy. This results in 
vibrations too rapid to show up on the scale of the graph. When there are several 
of  these modes with similar amplitudes then, after a few periods, their phases, 
which were originally identical, will become unrelated so they will interfere 
destructively and average out to a zero displacement. The beginning of this effect 
is already visible in some of these curves. The 221 graph, for example, shows a 
vibration with declining amplitude caused by two interacting states of similar 
energy, (311) and (213). At t = 0  they are in phase but after a period they have 
lost this coherence and have begun to cancel. Unless their frequencies are in a 
rational relation they will never again be exactly in phase. Since the density of  
states increases with energy this kind of dephasing will occur more readily with 
the higher states. 

6. Non-degenerate initial state 

When the initial mode is non-degenerate, i.e. of  the form lln, there are some 
common features in the results which we can analyse. In all of  these, with the 
exception of 222, the probabili ty shows a small amplitude of vibration and remains 
well above 0. The 00n graphs in particular, in which only the bending is excited, 
stay close to the value 1. This is a consequence of the relative purity of the initial 
local mode resulting in a large cll and a large (P). It is helped by the fact that 
the vibration remains symmetric so that the anti-symmetric states are not excited. 
222 is the only one which falls almost to 0 since the normal mode (222) is more 
of a mixture, mainly with the symmetric (320) state, which is almost degenerate 
with it. Generally, as n increases, the graphs become less smooth and higher 
frequency components are visible. There is little sign of an initial de-phasing 
drop in most of these results though, for 112 which has very near degeneracies 
with both (202) and (210), a drop is found. 
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7. The initial drop 

To understand the results in a more quantitative way we have applied the one-state 
model. The symmetric and anti-symmetric modes are treated separately. Using 
these equations we have predicted values of the beat amplitudes and frequencies 
for each choice of initial state. The columns in Table 2 show the accuracy of this 
approximation to the frequencies under three of the modes illustrated earlier. 
From this calculation the identity of each beat can be decided and its amplitude 
found. 

The beats cause P to vary around its average value (P). However, some of this 
variation is persistent while the rest is not. We suggest the hypothesis that the 
first part is that due to one dominant interaction, i.e. the beat with largest 
amplitude. In most of the examples this amplitude is considerably larger than 
those of the others and its frequency is lower so it appears to act as a signal in 
the presence of noise. This argument is supported by the realization that, if there 
were only one interaction, P would be a simple vibration with constant amplitude 
around (P) whereas two or more interacting modes with similar amplitudes and 
no common period are a model for random noise. From this hypothesis the drop 
in P is defined by 

d = 1 - ( P )  - 2 c t c m ,  (21) 

where cm is the largest coefficient, other than c~, in (19). This equation enables 
the drop due to dephasing to be predicted easily for all the states. For some large 
drops the one-state model was not accurate enough and the numerical solution 
was used instead. 

This drop can also be estimated by direct examination of the graphs. Some graphs 
have a clear indication of a drop but in others the estimate of the size of the 
drop is more subjective. A crude measure of drop is the difference between the 
initial value of 1 and the largest subsequent maximum. The major limitation of 
this definition is the finite size of the time interval T over which P is plotted. 
The values of the drop according to these two definitions were found and examples 
are shown in Table 3 for the modes of Figs. 1-4. More generally their relation 
is shown in Fig. 5. The drop calculated from (21) is almost always greater than 
the graphical estimate and this suggests that the maximum beat may not be the 
only persistent part of the probability or that the graphical maximum may contain 
a ripple which hides part of the drop or that the one-state estimates may be too 

Table 3. Drop in probability due to dephasing 

Mode Graph Calculated 
estimate from (21) 

100 0.01 0.023 0.489 
002 0.01 0.007 0.977 
221 0.08 0.106 0.755 
303 0.33 0.734 0.212 
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Fig. 5. The graphical estimate of the 
drop and the calculated d from Eq. 
(21) 

0.6 

graph 

0.4 

est. 

0-2 

0.2 

e 

0 

g 

0-4 0-6 0.8 1 

d f rom (21) 

high. However ,  the trends in the two measures are sufficiently in agreement  to 
give justification to our  definitions. 

Figure 6 is a graph showing the calculated drop for many  initial modes  as a 
funct ion o f  their (symmetrical)  state energy. It shows how the size of  this drop 
increases with energy in dramat ic  fashion in the range above 20 000 cm -1. States 
with the same 1 and m show a gradual rise in drop with n. States with n = 0 are 
generally low and those with m = 0 are generally high. States with the same value 
o f  l +  m and n have a similar energy and their drop increases as m decreases. 

8. Propensity rules 

It is of  considerable interest to formulate rules which indicate the selection of  
those modes  which interact most  strongly with any given initial state. Because 
we have an exact calculation we can discover the origin o f  these rules more  easily 
than from an analysis of  experimental results. 

Fig. 6, The drop d as a function of 
energy of the initial state lmn.  Lines 
connect states with the same lm.  n = 3 
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Table 4. Initial modes and their interacting states 

Mode Interacts with Beat amp. Beat freq. (cm -1) 

100 (001) 0.49 87 
200 (020) 0.40 55 

(110) 0.06 269 
110 (200) 0.22 282 
310 (130) 0.23 131 

(122) 0.08 63 
(220) 0.07 329 

311 (131) 0.21 135 
(123) 0.08 122 
(221) 0.06 318 
(213) 0.04 275 

323 (233) 0.06 156 
(241) 0.02 121 
(421) 0.02 4 

333 (325) 0.18 671 
(431) 0.04 481 

For this Hamiltonian there is one selection rule which plays a major part in the 
evolution. This is that modes must have exactly two different quantum numbers 
to have a non-zero interaction in V. This is a consequence of using only bilinear 
couplings in the kinetic and potential energy terms. There is also one selection 
rule for the eigenfunctions which is important. This is the symmetric/anti- 
symmetric rule which has already been emphasized. Degenerate modes have both 
symmetry types and mix with all states whereas the non-degenerate modes mix 
only with the symmetric states. 

Apart from these rules the selection of mixing modes seems to be related to Fermi 
resonance. Thus 002 is close in energy to 100 and 010 and 110; 200, 020; 102 
and 012 are even closer so these are the modes which mix. As the energy increases 
such near degeneracies become more numerous since more options are available, 
e.g. 400, 310, 220, 302, 212, 204, 114. The magnitude of the coupling interactions 
increases with the number of quanta in a mode especially when that number 
increases by one. Thus, for example 400 has matrix elements in descending order 
of magnitude with 501,301,502, 302, 310, 201. On the other hand it has a very 
small V element with 040 because the two modes have four quanta different; 
this gives a very small direct split between their symmetric and anti-symmetric 
combinations. The indirect split due to the coupling of each with other states is 
more substantial and is also the cause of the large drop. Table 4 shows, for a 
selection of initial modes the modes that interact most strongly, arranged in order. 
As Eq. (17) shows, this is related both to V and to the difference in eigenvalues. 

9. Density of states 

In the energy range considered these states are all discrete so, strictly speaking, 
there is no density of states. Nevertheless the idea is a useful one since it helps 
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to rationalize the results and makes it easier to connect with other statistical 
considerations. I f  the density is defined as N, the number  of  states within a band 
of width • cm -1, then a block diagram can be drawn covering the range of 
interest. This is shown in Fig. 7. It has maxima at energies corresponding to the 
near degeneracies noted above and with heights proportional to their number. 

From Fig. 7 it can be seen that the density at low energies is very low and that 
it increases quickly around 20 000 cm 1. The correlation with the trend in Fig. 6 
seems to indicate that the number  of Fermi resonances is important for the drop. 
On the other hand Fig. 7 also shows that modes with almost the same energy, 
and so the same density, can have very different drops. This emphasizes the fact 
that the drop also depends on the magnitude of the matrix elements of  V. 

In some discussions of  dephasing, e.g. [5], the discussion uses the golden rule 
which gives an interaction proportional to the density of  states and a P which 
decreases linearly or exponentially with time. In this treatment the initial decrease 
is always quadratic but inspection of some graphs suggests that, when the drop 
is considerable, it often approximates to a linear descent. Presumably this is due 
to the superposition of many quadratic drops. The golden rule itself cannot be 
the only factor since we have shown conclusively that symmetry plays a dominant 
role in all aspects of the results. Furthermore the profile of  the beat amplitudes 
is not usually of  Lorentz form. On the other hand the amplitude does have a 
form which resembles this in some circumstances. I f  one interacting mode m has 
a much larger matrix element Vim than the others the initial amplitude using (17) 
becomes 

e, = 1 / (1+  VtmVm,/(Z, --Din)2) = (z, -Dm)2/((z,-Din)2+ V, mVm,), (22) 

which is Lorentz like with the product V1mVmr acting as the damping factor 
despite the fact that the beat is not damped. 

The value of cl depends on two factors. One is the matrix element Vrs and because 
of the bilinear form of the Hamiltonian many near degenerate modes have a zero 
or very small element. The 1/(zl -Ds) factor is an inverse energy spacing and 
so can be considered as the origin of the density of  states dependence in c~. 
Practical calculations show that ci can be found, to reasonable accuracy, using 

Fig. 7. Dens i ty  of  states. N is the 
n u m b e r  of  s tates  wi thin  •  cm - t  

o l - i  
,0~00 ' 20~00 

cm-I 
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only 3 or 4 of  the nearest interacting states. Since a non-zero V~, has a magnitude 
in the range 100-300 cm -1, states within a range of • cm -1 make the major 
contribution. Thus the determining factor is not just the density of  states but the 
density of  interacting states. This helps us to understand why near degenerate 
states, with the same density of  states, can have very different values of c~. 

10. Role of  the amplitude of the initial mode 

As a means of organizing the observations we have found that the amplitude of 
the initial mode c~ is a useful and appropriate variable. For the non-degenerate 
modes this is always the largest amplitude. Since the amplitudes are positive and 
sum to unity the size of  ci limits the size of  all other amplitudes. From the 
definition it is clear that the drop is limited by 

2 (23) d < l - c l  

but this is not a very tight bound. 

A more interesting relation is found by adopting the simple hypothesis that other 
amplitudes in turn will each take half the remaining amplitude. This puts them 
into a geometric sequence which is easy to manipulate. For Some initial states it 
represents a fair approximation but for others it serves only as a crude estimate 
of a complicated situation. From this the drop is estimated to be 

d = 2/3 - c, /3 - c2/3. (24) 

Fig. 8 shows this relation along with the calculated drops for some non-degenerate 
modes as a function of c~. It can be seen that the relation is not close but it does 
thread through the points. Apart  from a few points the calculated drops seem to 
follow another curve whose origin we have not discovered. 

For the degenerate modes the corresponding argument is more useful. The 
symmetric and antisymmetric amplitudes separately add to 1/2. For each sym- 
metry the state derived from the initial mode and its partner will usually be the 
largest amplitudes. For some higher energy states this is not true and these fall 
outside these considerations. Often these two are very comparable in size though 
the antisymmetric one is usually a little larger since it has fewer modes to interact 
with it and reduce its size. I f  these are taken as equal then the inequality 
corresponding to (23) is 

d < 1 -4c~ .  (25) 

However, the assumption of geometric amplitudes leads to the relation 

d = 5 / 6 + 2 c j 3 -  14c~/3. (26) 

Figure 9 shows this relation along with the points for some of these degenerate 
initial modes. The results are closer to the curves and show how the constraints 
due to symmetry serve to limit the possible values. 
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Fig. 8. Calculated drop as a function of the initial state coefficient c I for non-degenerate modes. 
Curve is given by Eq. (24) 

Fig. 9. Calculated drop as a function of the initial state coefficient cl for degenerate modes.  Curve 
is given by Eq. (26) 

The dominant influence of cx on the results is apparent from these figures even 
though we have not been able to derive a precise equation for the relationship. 

11. C o n c l u s i o n s  

We have shown that the evolution of a vibrationally-excited water molecule is 
governed by several considerations. Symmetry plays an important role and divides 
the results into categories depending on the degeneracy or not of the initial mode. 
At low energies the degenerate modes have quantum beats with large amplitudes 
whereas the non-degenerate modes do not. At higher energies a dephasing drop 
is observed due to the stronger coupling of the local mode to the high frequency 
modes. This is more apparent in degenerate modes since these interact with both 
symmetric and anti-symmetric states whereas the non-degenerate modes involve 
only the symmetric states. The dephasing drop has been analysed and a formula 
for its calculation given and partly justified. Some propensity rules for the selection 
of important interacting states have been suggested. The role of the amplitude 
of the initial state in determining the drop has been illustrated. 

Although the water molecule has some idiosyncratic features, such as the pattern 
of its near resonances, the general principles that have emerged in this study 
should apply to many other small molecules. 
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The possibil i ty of exper imental  observat ion of the p h e n o m e n a  considered here 
has not  been  discussed. Since the direct excitat ion of a single local mode is 
difficult to achieve it cannot  be easy. Indirect  excitat ion of non-s ta t ionary  vibra- 

t ions through molecular  fluorescence is possible bu t  the result ing dephasing is 

too rapid for most  experiments  to measure.  The observat ional  condi t ions  
necessary to observe in t ramolecular  energy transfer  and  q u a n t u m  beats have been 

fully discussed by Freed and  Nitzan [2]. 
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